Name: \qquad

Mistakes are expected, inspected, corrected and respected.

1. Find the area of every square that can be drawn by connecting dots on a 3-dot by 3-dot grid.
2. Draw a hexagon with an area of 16 square units.

3. Draw a square with an area of 2 square units.

Write an argument to convince a friend that the area is 2 units 2.
4. Consider segment $A B$ at right. Draw a square with side $A B$.

What is the area of the square?
Use a calculator to estimate the length of segment $A B$.

5. Consider segment $C D$ at left. Draw a square with side CD. What is the area of the square?

Use a calculator to estimate the length of segment CD.
6. Find the area and side length of this square.

For \#7-34, do NOT use the $\sqrt{ }$ button on your calculator.
For \#7-9, estimate each square root to one decimal place.
7. $\sqrt{11}$
8. $\sqrt{30}$
9. $\sqrt{\mathbf{1 7 2}}$
10. Multiple Choice: Choose the pair of numbers $\sqrt{15}$ is between.
A. 3.7 and 3.8
B. 3.8 and 3.9
C. 3.9 and 4.0
D. 14 and 16

Find exact values for each square root.
11. $\sqrt{144}$
12. $\sqrt{0.36}$
13. $\sqrt{961}$

Find the two consecutive whole numbers the square root is between.
14. $\sqrt{27}$
15. $\sqrt{\mathbf{1 0 0 0}}$

Tell whether each statement is true.
16. $6=\sqrt{\mathbf{3 6}}$
17. $1.5=\sqrt{2.25}$
18. $11=\sqrt{\mathbf{1 0 1}}$

Find the missing number.
19. $\sqrt{x}=81$
20. $14=\sqrt{x}$
21. $25=\sqrt{x}$
22. $\sqrt{x}=3.2$
23. $\sqrt{x}=\frac{1}{4}$
24. $\sqrt{\frac{4}{9}}=x$

Find each product.
25. $\sqrt{2} \cdot \sqrt{2}$
26. $\sqrt{3} \cdot \sqrt{3}$
27. $\sqrt{4} \cdot \sqrt{4}$
28. $\sqrt{5} \cdot \sqrt{5}$

Give both the positive and negative square roots of each number.
29. 1
30. 4
31. 2
32. 16
33. 25
34. 5
35. What is the side length of a square whose area is 121 units 2 ?
36. Find x if $\mathrm{x}^{2}=121$.

