\qquad Date: \qquad Period: \qquad
Sec 1 H Unit 1 Day 6 - Solving Absolute Value Inequalities Classwork
Use mental math to solve the following, and graph the solutions on the number line. Then write a compound inequality to represent the graph.

1. a) $|x+3|=5$

b) $|x+3| \leq 5$

inequality:
c) $|x+3| \geq 5$

d) $|x+3|<5$

inequality:
e) $|x+3|>5$

inequality:
inequality:
2. a) $|x-4|=6$

b) $|x-4| \leq 6$

c) $|x-4| \geq 6$

inequality:
d) $|x-4|<6$

inequality:
e) $|x-4|>6$

inequality:
3. What kinds of patterns did you notice for the first two sets of problems?
4. Check to see if the following integers are solutions to this inequality: $|10-x| \leq 15$
a) 1
b) 30
c) -11
d) 0
e) -5
5. When you solved \#1a on the front page, you got $x=2$ or $x=-8$ as possible solutions. This would mean that you could have rewritten $|x+3|=5$ as $\mathrm{x}+3=5$ and solved it to get $\mathrm{x}=2$. How could you set up $|x+3|=5$ to get an equation with $x=-8$ as a solution?
6. Use the equation from \#2a: $|x-4|=6$ to write two equations you can solve algebraically to arrive at $x=10$ or $x=-2$ for solutions.
7. Jimmy and Susie sit next to each other in math class. Their teacher asked them to solve this inequality: $|x+4|-3=5$

Jimmy solved it this way:

$\|x+4\|-3=5$		(wrote two equations)
$\mathrm{x}+4-3=5$	or	$\mathrm{x}+4-3=-5$
$\mathrm{x}+1=5$	or	$\mathrm{x}+1=-5$
$\mathrm{x}=4$	or	$\mathrm{x}=-6$

Susie solved it this way:

$$
\mathrm{or} \quad \mathrm{x}+4=-8 \quad \text { (added } 3 \text { to both sides to isolate the absolute value grouping.) }
$$

Check the solutions to decide who solved it correctly.

What does this tell you about when to separate the absolute value into 2 equations?

Solve the following. Then graph the solutions on the number line and write the compound inequality representing the solutions.
8. $2|x+5|+7=19$
9. $2|x+5|+7 \geq 19$

