
Sec 1 H Unit 1 Day 6 - Solving Absolute Value Inequalities Classwork

Use mental math to solve the following, and graph the solutions on the number line. Then write a compound inequality to represent the graph.

3. What kinds of patterns did you notice for the first two sets of problems?

4. Check to see if the following integers are solutions to this inequality: $ 10 - x \le 15$					
a)	1	b) 30	c) -11	d) 0	e) -5

5. When you solved #1a on the front page, you got x = 2 or x = -8 as possible solutions. This would mean that you could have rewritten |x + 3| = 5 as x + 3 = 5 and solved it to get x = 2. How could you set up |x + 3| = 5 to get an equation with x = -8 as a solution?

6. Use the equation from #2a: |x - 4| = 6 to write two equations you can solve algebraically to arrive at x = 10 or x = -2 for solutions.

7. Jimmy and Susie sit next to each other in math class. Their teacher asked them to solve this inequality: |x + 4| - 3 = 5

Jimmy solved it this way:

|x + 4| - 3 = 5 (wrote two equations) x + 4 - 3 = 5 or x + 4 - 3 = -5 (combined 4 and -3 to get 1) x + 1 = 5 or x + 1 = -5 (subtracted 1 from each side) x = 4 or x = -6

Susie solved it this way:

|x + 4| - 3 = 5 |x + 4| = 8 (added 3 to both sides to isolate the absolute value grouping.) x + 4 = 8 or x + 4 = -8 (wrote two equations) x = 4 or x = -12 (subtracted 4 from each side)

Check the solutions to decide who solved it correctly.

What does this tell you about when to separate the absolute value into 2 equations?

<u>Solve</u> the following. Then <u>graph</u> the solutions on the number line and <u>write the compound inequality</u> representing the solutions.

8. 2|x+5|+7=199. $2|x+5|+7 \ge 19$

