Day 1

1. Rational: $0.8,3 / 7, \sqrt{64}, 0,62 / 7,12.6 \overline{7},-19, \sqrt{121},-\sqrt{100}, 12 / 5$

Irrational: $\sqrt{75}, \sqrt{32}, 2.343443444 \ldots, \pi$
2.


3a. whole numbers; might be 0 , no fractions 3 b . rational numbers; decimals in hundredths 3 c . irrational; uses pi
3 d . whole numbers; might be 0 , no fractions 3 e. natural numbers; has to have one person driving 3 f. irrational, uses
pi 3 g . rational numbers; decimals in hundredths

## Day 2

1) $\frac{100 \mathrm{~m}}{9.63 \mathrm{sec}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{inch}}{2.54 \mathrm{~cm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}} \cdot \frac{1 \mathrm{mile}}{5280 \text { feet }} \approx 23.2 \mathrm{mph}$ Usain would beat the alligator and hippopotamus
2) set up a set of fractions similar to \#1 above; Man O War's speed was approx. 40 mph , beats alligator and hippo
3) $32.2 \mathrm{ft} / \mathrm{sec} 2$
4) 25.4 blocks
5) not equivalent
6) equivalent
7) $\$ 55$ 8a) $5 / \$ 2$

8b) $\$ 0.40 / 1$ orange
8c) 2.5 oranges $/ \$ 18 d$ ) per orange 8 e ) per dollar 9) .3077 gallons $/ \$ 1, \$ 3.25 / 1$ gallon, it is more useful to know price of 1 gallon 10) 60 miles $/ 1$ hour, .0167 hours $/ 1$ mile, miles per hour most useful 11 ) 5 pounds $/ 1 \mathrm{bag}$, .2 bags per pound, more useful to know size of bag, so pounds per bag 12) . $6 \mathrm{bags} / \$ 1, \$ 1.67 / 1 \mathrm{bag}$, price per bag makes more sense 13) 24 ounce jar 14) solution $B$ is sweeter

Day 3

1. bottom row of table: $\$ 8.25, \$ 16.50, \$ 24.75, \$ 33$ yes, it is proportional
2. Yes proportional
3. Proportional because constant rate of change and at 0 months it costs $\$ 0$ 4. Not proportional because 0 degrees Celsius does not equal 0 degrees Fahrenheit. Bottom row of table: 32,50, 68, 86 5. Not proportional not 0 ft at 0 min 6. Rebekah is proportional; has a constant rate of change 7. Frank is proportional because constant rate makes straight line, also goes through $(0,0) \quad$ 8. Perimeter is proportional to side length. Area is not proportional to side. 9. Not proportional; no clear pattern to determine price for 30 tickets 10 a . A, C, G strongest (equivalent) 10b. B, E weakest (equivalent) 10 c . $\mathrm{A} / \mathrm{C} / \mathrm{G}$ are proportional, $\mathrm{F} / \mathrm{H}$ proportional, $\mathrm{B} / \mathrm{E}$ proportional because they make equivalent fractions $10 d$. $A / C / G$ then $D$ then $F / H$ then $B / E$

Day 4
1a. yes 1 b. 6 meters/second 2 . Rate is $\$ 9 /$ shirt. ( 0,0 ) means zero shirts cost $\$ 0$ and $(1,9)$ means 1 shirt costs $\$ 9$. 3. Johnson rate is 45 mph , Jorgensen rate is 60 mph . Johnsons got fewer mph. 4. Rate is 10 inches/hour, can be written in other equivalent rates like 5 inches $/ 30 \mathrm{~min}$. $\quad 5 . \$ 30 \quad 6$. D $\quad$ 7. Entry for 6 is 18 , entry for 7 is 21 $\begin{array}{lll}7 a . y e s ~ p r o p o r t i o n a l ~ & 7 b . y=3 x & 7 c . \text { unit rate is constant of proportionality, which is multiplied by } \mathrm{x}\end{array}$ $7 \mathrm{~d} . \mathrm{x}=1 / 3 \mathrm{y} \quad 7 \mathrm{e}$. Find the cost for x tickets $\quad 7 \mathrm{f}$. Find the number of tickets for $\$ \mathrm{y} . \quad 7 \mathrm{~g}$. reciprocals 8. Yes proportional, unit rate is $\$ 0.50 / 1 \mathrm{bar}$, cost $=.5^{*}$ bars, or $\mathrm{y}=.5 \mathrm{x}$

