\qquad Date: \qquad Period: \qquad Score: \qquad

1. Solve the following problem by writing a system of equations (be sure to identify your variables) and solving the system of equations using matrix row-reduction.

A theater wants to take in $\$ 2000$ for a certain matinee. Children's tickets cost $\$ 5.00$ each and adult tickets cost $\$ 10.00$ each. The theater has a maximum of 350 seats. What number of children's tickets and adult tickets can the theater sell?

The systems of equations in problems \#2-5 have already been written as an augmented matrix. Solve these systems. Show all of your work including a description what you did on each step.
2. $\quad\left[\begin{array}{ll:l}3 & 2 & -6 \\ 1 & 2 & 2\end{array}\right]$
3. $\left[\begin{array}{rr:r}-3 & 1 & -12 \\ 2 & 3 & -14\end{array}\right]$
4. $\left[\begin{array}{lll}7 & 2 & 24 \\ 8 & 2 & 30\end{array}\right]$
5. $\left[\begin{array}{rrr}5 & 1 & 9 \\ 10 & -7 & -18\end{array}\right]$

Solve the following systems of equations with a method of your choice.
6. $\left\{\begin{array}{c}x-y=11 \\ 2 x+y=19\end{array}\right.$
7. $\left\{\begin{array}{c}-4 x+9 y=9 \\ x=3 y-6\end{array}\right.$

