$\qquad$ Date: $\qquad$ Period: $\qquad$
Sec 1H Unit 7 Day 2 - Solving Systems using Row Reduction Classwork

NOTES: The principles involved in row reduction of matrices are equivalent to those we used in the elimination method of solving systems of equations. That is, we are allowed to

- Multiply a row by a non-zero constant.
- Add one row to another.
- Interchange between rows
- Add a multiple of one row to another.
- Keep a row unchanged

How do we use this to solve systems of equations? We follow the steps:
Step 1 Write each equation in standard form ( $a x+b y=c$ )
Step 2 Write the augmented matrix of the system.
Step 3 Row reduce the augmented matrix.
Step 4 Write the new, equivalent, system that is defined by the new, row reduced, matrix.
Step 5 Solution is found by going from the bottom equation
An augmented matrix consists of the coefficients and constant terms of a system of linear equations.


Row reduction is the process of performing elementary row operations on an augmented matrix to solve a system. The goal is to get the coefficients to reduce to the identity matrix on the left side. This is called reduced row-echelon form.

$$
\left[\begin{array}{cc:c}
1 & 0 & 2 \\
0 & 1 & -2
\end{array}\right] \longrightarrow \begin{aligned}
& 1 x+0 y=2 \longrightarrow \\
& 0 x+1 y=-2 \longrightarrow
\end{aligned} \longrightarrow \begin{aligned}
& x=2 \\
& y=-2
\end{aligned}
$$

NOW TRY IT: Find a sequence of matrices that starts with the original matrix and ends with the solution matrix. Justify each step with notation.
$\left[\begin{array}{ccc}5 & 2 & 43.50 \\ 2 & 4 & 35\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 6.5 \\ 0 & 1 & 5.5\end{array}\right]$

Solve by using row-reduction.

1. $\left\{\begin{array}{c}-2 x=y \\ 2-y=x\end{array}\right.$
2. $\left\{\begin{array}{l}2 x+y=11 \\ 3 x-2 y=6\end{array}\right.$
3. $\left\{\begin{array}{r}4 x+4 y=32 \\ x+3 y=16\end{array}\right.$
